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We examine the instability leading to depth-averaged circulations, which are related
to rip currents in the surf zone, due to wave–current interactions. Our intention is
to clarify some issues which are critical to the determination of instability properties,
as yet unresolved from previous studies. Those issues are also of interest for
hydrodynamic instability problems in general. Attention is restricted to normally
incident waves and the region inside, and just offshore of, the surf zone where
linearized shallow-water waves are applied. The coupling of waves and circulations
is modelled using the concept of wave radiation stresses and the classical ray theory.
The instability properties, in terms of the neutral modes, the most unstable mode and
the corresponding maximum growth rate, are examined in the domain of parameters
which represent the effects of offshore wave height and bottom friction dissipation.
Comparisons with observations of natural rip currents are made, and qualitative
agreements are achieved.

1. Introduction
This paper examines the linear instability in the formation of rip currents in the

surf zone, examining some aspects, of the mathematical procedure of determining
instability properties, that were not handled properly in previous studies. This
instability concerns particularly situations where the incident wave field and the
beach are both alongshore uniform, and depends on the interactions of waves and
the currents induced by the waves.

When a wave climbs up a beach, the loss of wave momentum due to shoaling
and breaking induces nearshore currents. Alongshore and rip currents, the two major
systems whose flow structures are predominantly horizontal, are of this origin. The
latter are the focus of this study. Rip currents are narrow seaward flows, and often
observed when waves are normally incident or nearly so. They are parts of the depth-
averaged cellular circulations which are characterized by narrow offshore directed
flows (rips), broad onshore flows in between and intense alongshore flows ‘feeding’
the rips close to the shoreline. Rip currents usually display a relatively regular spacing
alongshore, ranging from 50 to 1000 m (Short 1999).

The importance of alongshore variations in the wave field for the generation of rip
currents has long been established in the literature (Shepard, Emery & LaFond 1941;
Shepard & Inman 1951). With an imposed alongshore variation in the wave height,
Bowen (1969) first gave a mathematical description of the cellular circulations using
the concept of wave radiation stresses (Longuet-Higgins & Stewart 1960, 1961, 1962).
He also confirmed that the nonlinear convective inertia is responsible for narrowing
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the offshore flows and broadening the onshore returning flows, as was speculated by
Arthur (1962). What remains in question is the cause of such alongshore variations,
which probably arise from diverse processes in view of the wide range of the observed
rip spacing. This is somewhat less ambiguous on alongshore variable beaches when
the topographic effects on the wave field are considered. Indeed, rip currents are often
associated with rhythmic beaches. However, the presence of such a topography does
not explain whether it is a consequence of the currents or a cause. There are studies
that investigate the development of cellular circulations and rhythmic topography
by coupling the hydrodynamics of currents and sediment transport (e.g. Hino 1974;
Damgaard et al. 2002). On the other hand, it has also been argued that the necessary
alongshore variation in the wave field may arise as a result of an instability due
to the interactions of waves and currents. From the wave hydrodynamic point of
view, when a wavetrain of uniform crests encounters a current, refraction due to the
current can cause the wave crests to bend, resulting in focusing and defocusing of
the wave energy alongshore. In a study of rip currents driven by topography, Yu &
Slinn (2003) showed that the alongshore variability of the wave field can be altered
significantly even when circulations are weak. Therefore, a question to be put forward
is: If an alongshore-uniform wave field is perturbed, can the subsequent development
of circulations enhance the alongshore variability in the wave field?†

Early studies to explore this mechanism include LeBlond & Tang (1974), Iwata
(1976), Mizuguchi (1976). Realizing the weaknesses in those previous analyses,
Dalrymple & Lozano (1978, hereafter called DL78) attempted this approach again,
with a focus on the neutrally stable (or steady-state) circulation cells of small
amplitude on a planar beach. They found that equilibrium cells do not exist if the
effects of currents on the wavenumber field are not taken into account. This conclusion
was subsequently confirmed by Falqués, Montoto & Vila (1999) with a nice argument
using a Lyapounov functional. Upon including the effects of currents on both the
wavenumber and wave energy fields, DL78 did find linearized steady circulations.
However, there are uncertainties about their results. First, though we have used the
same basic set of equations, we cannot recover the solutions far offshore asserted in
DL78. Second, the asymptotic solutions close to the shoreline were not determined
properly in DL78. Some comments on these can be found in § 4.2. These solutions
are needed to facilitate the shoreward and seaward integrations toward the breaking
line where matching the physical variables leads to the determination of the normal
modes. Third, DL78 have neglected the perturbation in the location of the breaking
line. While this seems to have been recognized in their paper (see the discussion
around their equation (A6)), the conclusion drawn there is only appropriate if all the
variables of the basic state are zero. As will be seen in § 4.3, the perturbation of the
breaking line location plays an important role in determining the proper matching
conditions. Since DL78 considered only neutral modes, Falqués et al. (1999) made
an attempt to investigate if there is indeed an instability. They considered a constant
still-water depth in front of a vertical wall, as an attempt to avoid dealing with
wave breaking and hence any matching at the breaking line. However, they did not
consider any reflection from the vertical shore face, nor any boundary condition at
the wall. It is then not clear how the normal modes of the linearized system were

† Murray & Reydellet (2001) studied rip currents on planar beaches based on a hypothesized
wave–current interaction process which causes waves to be dissipated more in the presence of rip
currents. That hypothesized wave–current process is outside the scope of this study. Some comments
on that instability analysis can be found in § 4.1.
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found. While they expressed some reservations about their model, they concluded
that the instability could occur, and estimated a typical growth time about 0.06 s for
a water depth of 1 m. This is unreasonably fast.

In view of the above discussion, and that the depth-averaged circulations and
their interactions with waves are still of significant interest in nearshore studies,
it seems useful to re-examine this instability problem by conducting a systematic
mathematical analysis. For this purpose, we will follow, as closely as possible, the
assumptions in DL78. Our particular attention is to carefully address the issues of
the boundary condition at infinity, the appropriate unboundedness at the shoreline,
and the matching conditions at the breaking line where the basic state is not smooth
due to wave breaking. In all of these we find significant differences from DL78.
Furthermore we do not restrict our attention to steady-state solutions, but investigate
the conditions for existence and the properties of growing perturbations. Nevertheless,
the extent of the applicability of this mechanism to the formation of rip currents on
natural beaches remains open. There seem to have been no careful laboratory studies
relevant to it, and the difficulties of observationally distinguishing this instability
mechanism from other possibilities are considerable, to say nothing of the uncertainty
in parameters like the breaking index and the bottom friction coefficient. Despite
this, the issues addressed here are of interest for hydrodynamic instability problems
in general, in particular for systems where differential equations are not consistent (in
the number and the form) throughout the domain due to inherent discontinuities.

The outline of the paper is as follows. In order to be self-contained, equations
describing the dynamics of the depth-averaged circulations and the average wave
field are presented in the next section. The basic-state solution, which is well-known,
is given in § 3 without great detail. Linear instability analysis is carried out in § 4
where the mathematical procedure to determine the normal modes is discussed at
length. The properties of the instability are discussed in § 5, where comparisons with
observations of natural rip currents are also attempted. Some concluding remarks are
made in § 6.

2. Formulation
We consider monochromatic waves on alongshore-uniform beaches. At incidence,

there is no variation along the wave crests. In the horizontal plane, x is pointing
offshore and y is alongshore. In the absence of fluid motions, the shoreline is located
at x = 0 and the water depth h(x) describes the beach topography. As is customary in
nearshore studies, circulations are described using the two-dimensional shallow-water
equations, which are derived by averaging the continuity and Navier–Stokes equations
in time with respect to the wave period and in depth (Mei 1989). Let u = (u, v) be
the across-shore and alongshore velocities of the current and η the mean surface
elevation (pressure field). We then write

ηt + ∇ · (du) = 0, (2.1)

ut + u · ∇u = −g∇η + τw − τ b, (2.2)

where d = h(x) + η is the total water depth, g the acceleration due to gravity, τw the
forcing due to waves and τ b the bottom friction arising from the depth integration. The
horizontal mixing terms, representing the effects due to small-scale turbulence and/or
vertical fluctuations in the current velocities, are neglected in this linear instability
analysis, following LeBlond & Tang (1974), DL78 and Falqués et al. (1999). The
forcing term τw represents the transfer of wave momentum to the currents. It is
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commonly modelled as the convergence of the wave radiation stress tensor after
Longuet-Higgins (1970), i.e.

τw = −(ρd)−1∇ · S, (2.3)

where ρ is the water density and

Sxx = E

(
1
2

+
k2

k2 + l2

)
, Sxy = Syx = E

kl

k2 + l2
, Syy = E

(
1
2

+
l2

k2 + l2

)
(2.4)

are the elements of S for linear shallow-water waves. E = 1
8
ρgH 2 is the wave

energy, where H is the wave height, and k = (k, l) is the wavenumber vector. The
parameterization of the bottom friction is a direct adaptation of studies in open
channel hydraulics. For weak currents, it can be approximated as

τ b = d−1µu, (2.5)

where µ = (2/π)cf uw is the friction velocity defined using the amplitude of the wave
orbital velocity, and cf is the empirical friction coefficient. For linear shallow-water
waves, uw = 1

2
Hd−1

√
gd .

We assume that the topography and current both vary slowly such that the
modulations of the averaged wave field can be described using the ray theory.
The conservation of wave crests requires

kt + ∇ω = 0, (2.6)

where the wavenumber k and wave angular frequency ω satisfy the dispersion
relationship which, for linear shallow-water waves, is

(ω − u · k)2 = gd(k · k). (2.7)

By definition, ∇ × k = 0. Before the wave breaks, the wave energy is described by

Et + ∇ · [(Cg + u)E] + Sxxux + 1
2
Sxy(uy + vx) + Syyvy = 0, (2.8)

where Cg =
√

gd(k · k)−1/2k is the group velocity vector. After breaking, a saturated
surf zone is assumed, i.e.

H = γ d, (2.9)

where γ is the empirical breaking index. This means that the wave height inside the
surf zone is controlled by the local water depth, rather than by the offshore wave
conditions. The value of γ cited in the literature can vary from 0.3 to 1.2, accounting
for both monochromatic and random waves (Lippmann, Brookins & Thornton 1996).
The wave considered in this study may be regarded as the ensemble average of a
random wave. Note from (2.8) that the wave energy is not conserved, even before
the breaking, due to the terms for wave radiation stresses. These terms, unlike the
energy flux divergence, represent the work done by radiation stresses acting on the
strain of the velocity field of the current. Thus, they act as spatially distributed energy
sources/sinks. Equations (2.1)–(2.9) are the same as in DL78.

The depth-averaged circulation is not divergence free, see (2.1). An external forcing
on a water column can be balanced by a change of the total water depth of the column
without necessarily setting up a net, vertically averaged, transport. The dynamics of
the circulation is better revealed by the vorticity balance. Let q = (vx − uy)d

−1 be the
potential vorticity in the vertical direction. Then from (2.1) and (2.2)

qt + u · ∇q = d−1[∇ × τw − ∇ × τ b]. (2.10)
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Clearly, vorticity is generated due to ∇×τw , the curl of the wave forcing, and dissipated
by the bottom friction. For normally incident waves in the absence of alongshore
variations, the wave forcing is non-zero and also in the across-shore direction due
to wave breaking and refraction by the topography, i.e. ∂Sxx/∂x �=0. However, it has
no curl because of the alongshore uniformity, and hence does not contribute to the
vorticity generation. This is the scenario of the basic state where Sxx,x is balanced by
an across-shore pressure gradient and no flow is induced, see § 3. An inhomogeneity
alongshore, for instance due to a disturbance in the wave field, will lead to ∇ × τw �=0
and the initiation of circulations. The subsequent evolution of the circulation then
depends on the balance between the source and dissipation of the vorticity.

Let us consider a topography which consists of two sections: a beach with constant
slope β and a horizontal flat bed extending to infinity, i.e.

h(x) = βx for x � xF , h = hF for x � xF . (2.11)

The incoming waves are normally incident from x > xF , with the wave height HF

and angular frequency ωF in water of depth hF over the horizontal bed. With the
assumption of shallow-water waves, attention is restricted to waves near and inside
the surf zone. The choice of the topography implies that the waves over the horizontal
bed have undergone considerable shoaling and are nearly breaking. In other words,
HF and hF should have values close to the breaker height and breaking depth,
respectively. This is merely for theoretical expediency, since nearshore circulations
are primarily due to wave breaking. Denoting dimensionless variables by primes, we
choose the following scaling for waves and currents:

(x, y) = (x ′, y ′)xF , d = d ′hF , η = η′hF , u = u′
√

ghF , t = t ′ xF√
ghF

,

H = H ′HF , ω = ω′ωF , k = k′ ωF√
ghF

, Cg = Cg
′√ghF .


 (2.12)

The dimensionless equations are readily obtained from (2.1)–(2.9), and are omitted
here. Two control parameters are identified. The first,

R0 =
HF

hF

, (2.13)

represents the wave condition close to the breaking point. It provides a measure of
the relative strength of the incident waves. The second,

R1 =
π

16

β

cf

R0, (2.14)

indicates the relative importance of the bottom friction. According to the scaling in
(2.12),

∇ × τw

∇ × τ b

∼
1
8
gH 2

F h−1
F x−1

F x−1
F

(2/π)cf HF h−1
F

√
ghF

√
ghF h−1

F x−1
F

=
π

16

β

cf

R0. (2.15)

Thus, R1 compares the rate of vorticity generation by ∇ × τw to the rate of its
dissipation by bottom friction. The beach slope β appears because the scales for the
depth and for the horizontal lengths are different. As will be seen in § 5, β is only a
geometric parameter relating the scales rather than a dynamical one controlling the
instabilities. Hereafter, we shall work only with dimensionless variables, and drop the
primes for simplicity.
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Figure 1. The across-shore profile of the basic state. R0 = 0.4 and γ = 0.6.

3. Basic state
Let us denote the basic state by the subscript 0. For normally incident waves

in the absence of any alongshore variations, the basic state is independent of y

and t , and hence is motionless, i.e. u0 = v0 = 0. Thus, ω0 ≡ 1, l0 ≡ 0, S0xy ≡ 0 and
∂S0yy/∂x ≡ 0. The momentum balance reduces to that between the across-shore wave
forcing ∂S0xx/∂x and the gradient of the surface elevation η0 (set-down/up). The
equations for η0, k0 and H0 are readily obtained from (2.2), (2.7), (2.8) and (2.9).
To integrate these equations, we require η0 → 0 as x → ∞, and the solution to be
continuous at the breaking line. The results are presented below. Details can be found
in Mei (1989) and other publications.

For x > 1, η0 = 0, H0 = 1, k0 = −1, and so d0 = 1. Inside x =1, it is convenient to
express the solution in terms of the total water depth. For xb0 � x � 1, H0 = d

−1/4
0

and d0 is implicitly given by

d0 = x +
(
R2

0/16
)(

1 − d
−3/2
0

)
, (3.1)

where

xb0 = (1 + γ 2/16)(R0/γ )4/5 − R2
0/16 (3.2)

is the location of the breaking line, measured from x = 0. For x < xb0, H0 = γR−1
0 d0

and

d0 = β̃(x − xs0), where β̃ ≡ (1 + 3γ 2/8)−1, (3.3)

and

xs0 = − 1
16

[
R2

0 + 5γ 2(R0/γ )4/5
]

(3.4)

is the location of the shoreline accounting for the set-up η0 and measured from x =0.
For x < 1, k0 = −d

−1/2
0 and is unbounded at x = xs0 because the wavelength vanishes

at zero water depth. A sample plot of the basic state is shown in figure 1 for R0 = 0.4
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and γ = 0.6. Taking for example hF =3.0 m, the value of R0 is for HF = 1.2 m. Note
that the basic state has discontinuous gradients at x = xb0, due to a sudden increase in
dissipation of the wave energy. It is also not smooth at x = 1 where the topography
changes.

It is interesting to note that the basic state has no depth-averaged current, but a
pressure gradient due to the presence of waves. It is the instability of the set-up that is
of interest here, and this instability depends on the interaction of waves and currents:
alongshore perturbations in the wave field produce sources of vorticity; the resulting
circulation could enhance the perturbations by their refractive effects on the wave
field when certain conditions are met, leading to the growth of the perturbations.
This is analogous to Rayleigh–Bénard instability in which the instability of the basic
temperature gradient generates motions (the basic state is otherwise motionless).

4. Linear instability
To study the instability of the basic state subject to infinitesimal alongshore

perturbations, we assume

(u, v, η, H, k, l, ω) = (0, 0, η0, H0, k0, 0, 1) + ε(u1, v1, η1, H1, k1, l1, ω1), (4.1)

where ε is arbitrarily small. Linearizing the dimensionless versions of (2.1)–(2.9)
around the basic state, we obtain the dimensionless equations for the perturbations
as follows. For circulations,

η1,t + d0,xu1 + d0u1,x + d0v1,y = 0, (4.2)

u1,t = −η1,x − R2
0

[
d−1

0 (S1xx,x + S1xy,y) − η1d
−2
0 S0xx,x

]
− 1

8
R2

0R
−1
1 µ0d

−1
0 u1, (4.3)

v1,t = −η1,y − R2
0

[
d−1

0 (S1xy,x + S1yy,y)
]

− 1
8
R2

0R
−1
1 µ0d

−1
0 v1, (4.4)

where a subscript proceeded by a comma stands for a partial derivative and

S1yy = 1
2
E1, S1xy = k−1

0 l1E0, S1xx = 3
2
E1. (4.5)

E0 = 1
8
H 2

0 and E1 = 1
4
H0H1 are the basic and perturbed wave energies, respectively,

and µ0 = 1
2
H0d

−1/2
0 is the friction velocity. For waves,

l1,t + ω1,y = 0, (4.6)

where

ω1 = k0u1 + 1
2
k2

0η1 + d0k0k1. (4.7)

The irrotationality of the wavenumber field leads to

l1,x − k1,y = 0. (4.8)

Before the wave breaks,

E1,t +
[(

u1 − 1
2
d

−1/2
0 η1

)
E0 − d

1/2
0 E1

]
,x

+
[
v1,y − d

1/2
0 k−1

0 l1,y

]
E0

+ S0xxu1,x + S0yyv1,y = 0, (4.9)

where S0yy = 1
2
E0. After the breaking,

H1 = γR−1
0 η1. (4.10)

Apart from scaling, equations (4.2)–(4.10) are the same as in DL78.
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Once the circulations develop, the shoreline becomes a moving boundary, at which
vanishing normal flow must be satisfied, i.e.

−xs,t + u = vxs,y at x = xs(t, y). (4.11)

Expanding the shoreline position as xs = xs0 + εxs1(t, y), we have xs1 = − β̃−1η1(xs0)
following from d(xs) = 0. Linearizing (4.11) around x = xs0, the kinematic boundary
condition at the shoreline is approximated as

u1 = −β̃−1η1,t at x = xs0. (4.12)

As x → ∞, the appropriate boundary condition for a hyperbolic system is the so-
called ‘radiation condition’, which states that disturbances must propagate outward
at infinity (Courant & Hilbert 1962). As will be seen in § 4.2, simply rejecting the
families of solution which increase spatially at large x is not sufficient to ensure the
radiation condition.

Hydrodynamic instability problems which can be solved more or less explicitly are
commonly attacked by immediately examining wave-like or cellular perturbations, a
procedure which goes back at least to Rayleigh in his early studies of inviscid parallel
flows and convection. There are good technical reasons for this, and this tradition
will be followed here. However, it is still desirable to keep in mind that the underlying
problem is the initial value problem for the linearized partial differential equations:
we want to know if there are any finite (though small) disturbances which can evolve
from arbitrarily small initial perturbations. When the linearized equations constitute
a hyperbolic system, as is the case here, the theory of characteristics gives a good
overall picture of the initial value problem. Sometimes this broader perspective is very
helpful in clarifying various questions, such as the precise meaning of a ‘radiation
condition’ or the number and character of the appropriate boundary conditions. This
has been the case in this study. In this section, we shall still follow the traditional
approach of wave-like perturbations. When necessary, we make use of the theory
of characteristics, but defer more detailed considerations to the Appendix. Let f1

represent the perturbation of a variable and

f1 = f̂ 1(x)eiαy+iσ t + c.c., (4.13)

where α is the wavenumber of the alongshore perturbations and σ the complex
frequency. For generally complex values of σ , the circulation cells described by (4.13)
propagate alongshore and grow (or decay) in strength as time passes, depending on
the sign of Im σ . We shall focus on non-propagating cells, i.e. iσ is real or zero. These
are directly associated with rip current circulations.

4.1. On the neglect of effects on the wavenumber field and the resulting stability

In their study of neutral modes, DL78 found that (4.2)–(4.10) do not have non-
trivial steady-state solutions if one assumes that the effects of currents on the
wavenumber field are insignificant and neglects k1 and l1. This indicates that
alongshore perturbations may not be sustained due to insufficient wave forcing if
variations in the wavenumber field are not taken into account. This was confirmed
by Falqués et al. (1999), who proved that the basic state is stable by judiciously
constructing a Lyapounov function. In both DL78 and Falqués et al. (1999), the wave
dispersion relationship (2.7) was retained with the wave frequency being unperturbed,
which is a consequence of conserving the wave crests. From the mathematical point of
view, the system in that case is over-determined, since the four unknowns, u1, v1, η1 and
H1, are required to satisfy five equations: the continuity, the momentum balances in the
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x- and y-directions, the wave energy balance, and the wave dispersion relationship.
From the physical point of view, the stability of the basic state is a result of an
inconsistency in the demands made on the pressure field (surface elevation) by the
conservation of wave crests and by the alongshore momentum. The explanation may
be as follows.

When k1 and l1 are neglected, the waves remain normally incident and Sxy ≡ 0.
Furthermore, the perturbations of Sxx,x and Syy,y are due to the variations in the
wave height solely. Inside the surf zone, the momentum equations for the currents,
(4.3) and (4.4), reduce to

u1,t = −
(
1 + 3

8
γ 2

)
η1,x − 1

8
R2

0R
−1
1 µ0d

−1
0 u1, (4.14a)

v1,t = −
(
1 + 1

8
γ 2

)
η1,y − 1

8
R2

0R
−1
1 µ0d

−1
0 v1. (4.14b)

Because of the assumption of a saturated surf zone, i.e. (4.10), the perturbed wave
forcing due to the variations in the wave height simply enhances the magnitudes of
the pressure gradient terms, and the flow inside the surf zone is effectively pressure
driven as seen in (4.14a) and (4.14b). On the other hand, the wave frequency is not
altered in the absence of k1 and l1, and the wave dispersion relationship (4.7) leads
to u1 = 1

2
d

−1/2
0 η1. This means that to conserve wave crests the water depth must be

increased at places where offshore flows are developed. Such a flow field, however,
cannot be sustained, because the alongshore flows driven by the pressure gradient
diverge from the offshore flows (high-pressure fields), and hence tend to stop the
circulations.

The importance of the perturbations in the wavenumber field is to disrupt the
alongshore uniformity of the wave crests so that across-shore transport of the
alongshore wave momentum, Sxy , is produced, and consequently a wave forcing
Sxy,x . Thus, the flow field given by (4.3) and (4.4) is no longer purely pressure driven.
Specifically, the refractive effects due to circulations tend to produce an alongshore
wave forcing Sxy,x directed toward the places where flows are offshore, and so tending
to counter-balance the pressure force −η1,y . With appropriate alongshore variations,
the forcing Sxy,x can be sufficient that alongshore flows develop and converge toward
the offshore flows. This leads to the growth of the circulations and hence the instability
of the basic state.

It is worth pointing out that the instability analysis in Murray & Reydellet (2001)
also does not include the effects of currents on the wavenumber field. The circulations
considered there are therefore also pressure driven, in particular in the alongshore
direction. Their finding of instability, however, does not contradict the argument
above. That instability is a result of their hypothesized extra dissipation of the wave
energy in the presence of offshore directed currents. This process may be regarded as
a kind of wave–current interaction, but is quite different from the refractive effects
considered in this paper, and affects only the wave height not the wavenumber field.
With such a dissipation, an additional wave forcing, directed offshore, is effectively
produced in regions where offshore currents are, and therefore tends to accelerate
the flows there. As a result, low-pressure fields are formed and associated with the
offshore currents. Driven by pressure, alongshore flows then converge toward the
offshore flows. One might say that the hypothesized Murray & Reydellet mechanism
enhances the circulation by driving its offshore section and sucking it outward, while
the refractive wave–current interaction instead drives the alongshore feeding section
and pushes out the offshore currents. While the hypothesized dissipation can lead to
an instability (perhaps a nonlinear one, as the authors suggest that finite-amplitude



412 J. Yu

perturbations may be needed to trigger the instability), the existence of the dissipation
itself has yet to be established. The refractive wave–current interaction on the other
hand is based on well-established physical principles.

4.2. Asymptotic behaviour

Since the differential equations are not consistent on crossing the breaking line, we
must carry out the integrations of the linearized equations inside and outside the
surf zone separately, and construct the complete solution by properly matching the
physical variables at the breaking line. To do so, we need to supply the data at
the shoreline which satisfy the boundary condition (4.12) and the data at large
x which satisfy the radiation condition. These can be provided by the asymptotic
solutions as x → xs0 and as x → ∞. Note that the system is singular at the shoreline
because d0(xs0) = 0. Therefore, unbounded solutions may exist at the shoreline, and
their suitability for constructing a physical solution has to be carefully examined.

4.2.1. At the shoreline

Close to the shoreline, we introduce the transformation ζ = (x − xs0)
1/2, where

x >xs0. The total water depth is then written as d0 = β̃ζ 2, and the bottom friction

velocity µ0 = 1
2
γR−1

0 β̃1/2ζ . For sufficiently small ζ , it is seen from (4.4) that v1 can
be at most of O(ζ ) for finite values of R1. By omitting the terms of O(ζ ) smaller
than the leading-order terms, three differential equations for the amplitudes of the

perturbations, û1(x), η̂1(x) and l̂1(x), can be approximated from (4.2), (4.3) and (4.8)
as follows:

û1,ζ = −2ζ −1û1 − 2iσ β̃−1ζ −1η̂1, (4.15)

η̂1,ζ = − 1
8
γR0R

−1
1 β̃1/2û1, (4.16)

l̂1,ζ = −2iαβ̃−1ζ −1û1 + iαβ̃−3/2ζ −2η̂1 + 2iσ β̃−1/2 l̂1. (4.17)

From (4.6) and (4.7), we have

k̂1 = −d−1
0 û1 + 1

2
d

−3/2
0 η̂1 + α−1σd

−1/2
0 l̂1. (4.18)

Following (4.10), Ĥ1 = γR−1
0 η̂1. We note that as the shoreline is approached, the

wave radiation stresses become essentially independent of the wavenumber field, and
depend only on the wave height which is determined by the local water depth. This
is due to refraction by topography which causes the waves to be increasingly normal
to the shoreline as the depth decreases. This means that sufficiently close to the
shoreline, the flow field of the circulation is not influenced by the wavenumbers, even
though the latter may be large there. This is explicitly evident in the asymptotic flow
equations (4.15) and (4.16), where the perturbation of the wavenumber field is absent.

Approximate solutions of (4.15)–(4.17) as ζ → 0 can be obtained using a Frobenius
series in ζ . Of the three families of solutions admitted by the equations, one is
bounded at the shoreline. A second family has an unbounded flow field as x → xs0

and thus is not physically appropriate since η̂1 and û1 must remain finite. The third

family is also unbounded, but only in the wavenumber components l̂1 and k̂1. This
singularity is unsurprising since the wave approximation becomes invalid as the water
depth approaches zero. However, the wave solution may be disregarded in a small
region close to the shoreline, since its influence on the flow properties is negligible
there, and the wave information only propagates shoreward. Thus the first and third
family are admissible for constructing a solution near the shoreline, satisfying the
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shoreline boundary condition on the flow and matching with the incoming wave and
flow information. The first family (bounded) is found to be

û1 = 0, η̂1 = 0, l̂1 = i − 2σ β̃−1/2ζ. (4.19a,b,c)

The third family (admissible unbounded) is

û1 = −iσ β̃−1 + 1
12

γ σ 2R0R
−1
1 β̃−3/2ζ, (4.20a)

η̂1 = 1 + 1
8
γ iσ β̃−1/2R0R

−1
1 ζ, (4.20b)

l̂1 = − 1
8
γασR0R

−1
1 β̃−2

(
1 + 2iσ β̃−1/2ζ

)
ln ζ − iαβ̃−3/2ζ −1 + i. (4.20c)

First, the flow variables û1 and η̂1 given by both families satisfy the boundary condition

at d0 = 0, i.e. (4.12), as ζ → 0. Second, in (4.20), l̂1 = O(ζ −1). It follows from (4.18) that

k̂1 = O(ζ −3). This is due to ∇ × k = 0, which is a linear equation. Since k0 ∼ O(ζ −1),
strictly speaking, the solution (4.20) should be restricted to O(ε1/2) < ζ 	 1, i.e.
O(ε) < d0 	 1, for the perturbation expansions of l and k to be valid. However,
as the circulation is not coupled to the wavenumber field the singular behaviour for
d0 → 0 does not affect the flow variables given in (4.20a, b). Using (4.19) and (4.20)
as the initial data, one can start the seaward integrations of (4.2)–(4.8), together with
(4.10), to obtain two appropriate independent solutions. A suitable linear combination
of these, determined by the matching at the breaking line (see § 4.3), will give the
actual perturbation solution in the surf zone. We note that in DL78 only one family
of solution was reported close to the shoreline, and hence in the surf zone.

The existence of two families of solution in the vicinity of the shoreline can be
justified by analysing the characteristics of the hyperbolic system, (4.2)–(4.8) and (4.10),
for the surf zone. As shown in the Appendix § A.1, there are four characteristics across
the surf zone; two are incoming (i.e. directed toward the shoreline), one is outgoing
(seaward directed) and the other is x = const. The two incoming characteristics
propagate the solution from the interior (the surf zone) to the shoreline. One of them

carries l̂1, and the other carries a linear combination of û1 and η̂1. As the solution in
the interior is yet to be determined, two degrees of freedom must be allowed in the
asymptotic representation near the shoreline in order to avoid any conflict with the
incoming solution from the interior. These are in fact the proportionality coefficients
of the two families given by (4.19) and (4.20).

4.2.2. At large x

For x > 1, d0 = 1 and µ0 = 1. Four differential equations are obtained from (4.2),

(4.3), (4.8) and (4.9) for the amplitudes û1, η̂1, l̂1 and Ĥ1:

û1,x = −iαv̂1 − iσ η̂1, (4.21)

η̂1,x = −
(

1
16

R2
0R

−1
1 + iσ

)
û1 − 3

8
R2

0Ĥ1,x + 1
8
iαR2

0 l̂1, (4.22)

l̂1,x = iαk̂1, (4.23)

Ĥ1,x = 5
4
û1,x − 1

4
η̂1,x + 3

4
iαv̂1 + iσĤ1 + 1

2
iαl̂1. (4.24)

The alongshore velocity v̂1 and the wavenumber k̂1 are given by algebraic equations
following (4.4) and (4.6), i.e.(

1
16

R2
0R

−1
1 + iσ

)
v̂1 = −iαη̂1 + 1

8
iαR2

0(k̂1 − Ĥ1), (4.25)

k̂1 = −û1 + 1
2
η̂1 + σα−1̂l1. (4.26)
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The solutions admissible by (4.21)–(4.24) behave exponentially in x for real iσ .
For σ = 0 (neutral modes) and for sufficiently small real iσ , two families of spatially
decaying solutions can be found. Suppose both families are used to construct the
asymptotic behaviour at large x. By letting the radiation condition be satisfied at
a large distance, say xe, the proportionality of each family can be determined, and
is an exponential function of xe. It is readily seen that when we let xe → ∞ either
the proportionality of the faster decaying family approaches zero exponentially or
the proportionality of the slower decaying family approaches infinity exponentially,
depending on the normalization. This suggests that a linear combination of the two
families cannot uniformly satisfy the radiation condition. Therefore, only one family
can be allowed, namely the faster decaying one. For sufficiently large real iσ , (4.21)–
(4.24) admit only one family of spatially decaying solutions. This structure of the
asymptotic behaviour at large x is justified by the results of the characteristic analysis
in the Appendix § A.2. At large x, there is only one outgoing characteristic which
propagates the solution from the interior (the region outside the surf zone) to infinity.
Connecting consistently to the solution coming from the interior implies that one
degree of freedom is allowed in the asymptotic representation at large x.

For the same equations, DL78 reported the existence of three families of spatially
decaying solutions at large x. All of them were used to determine the asymptotic
behaviour at large x. Their solution of the across-shore profile of the perturbed wave
energy exhibits a sharp peak just offshore of the breaking point, see their figures 2
and 3. This seems to suggest an abnormality in the matching.

4.3. Matching conditions at the breaking line

The location of the breaking line xb is defined by

H+(xb) = γR−1
0 d+(xb), (4.27)

where the superscript + indicates the variables obtained for outside the surf zone.
Correspondingly, the superscript − is used below for the inside. Assuming the
perturbation expansion xb = xb0 + εδxb1e

iαy+iσ t + c.c., where δxb1 is a constant, we
find from (4.27) that

δxb1 =
4

5

[
(R0/γ )Ĥ+

1 − η̂+
1

d+
0,x

]
x=xb0

. (4.28)

Clearly, the displacement of the breaking line is a consequence of requiring the wave
height (i.e. wave energy) to be continuous. Let f = f0 + εf̂1(x)eiαy+iσ t + c.c. represent
a physical variable to be solved. The continuity of f at x = xb can be approximated
as

f̂ −
1 − f̂ +

1 + �f0,xδxb1 = 0 at x = xb0, (4.29)

where �f0,x = f −
0,x(xb0) − f +

0,x(xb0) is the discontinuity of the slope of the basic state at
the breaking line. Notice the significance of δxb1 when the basic state is not zero. There

are constraints applied to (4.29). First, from (4.6) and (4.7), k̂1 depends linearly on û1,

η̂1 and l̂1. Second, Ĥ1 and η̂1 are linearly related at x = xb0 because of (4.28) and (4.10).
Third, since the flow is inviscid, a discontinuity in v̂1 can be allowed. Therefore, of the

six unknowns (i.e. û1, v̂1, η̂1, Ĥ1, l̂1 and k̂1) to be determined, only three independent

relations can be derived from (4.29), regarding û1, η̂1 and l̂1. The same conclusion is
drawn by analysing the characteristics on both sides of the breaking line x = xb0, see
Appendix A.
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Figure 2. det(M) as a function of α for different values of iσ . R0 = 0.4, R1 = 5.4920 and
γ = 0.6. ——, iσ = 0; – – –, iσ = 0.002; · · · · · ·, iσ = 0.003.

In view of the asymptotic behaviour discussed in § 4.2, we then obtain three
linear equations from (4.29), determining the proportionality coefficients of the three

admissible families of solution. Let (û−
11, η̂

−
11, l̂

−
11) and (û−

12, η̂
−
12, l̂

−
12) be the two families

inside the surf zone, and (û+
1 , η̂+

1 , l̂+1 ) the one outside the surf zone. The matrix of the
homogeneous system for the coefficients is then written as

M =


û−

11 û−
12 −û+

1

l̂−
11 l̂−

12 −l̂+1
η̂−

11 η̂−
12 −η̂+

1 − 4
5

(
�η0,x/d

+
0,x

)[
η̂+

1 − (R0/γ )Ĥ+
1

]

 , (4.30)

where all the entries are evaluated at x = xb0. Note that M = M(α, σ ; R0, R1, γ ), i.e. a
function of α and σ given the parameters R0, R1 and γ . For non-trivial coefficients
to exist, the determinant of M must vanish. Thus,

det[M(α, σ ; R0, R1, γ )] = 0 (4.31)

is the dispersion relation function for the normal modes. For purely growing modes,
iσ is real and positive, and (4.31) gives the growth rate curve.

5. Instability properties
Typical plots of det(M) as a function of α, given iσ , are presented in figure 2,

showing the existence of growing modes. For real iσ , M can be rescaled such that
det(M) is real. The parameters are R0 = 0.4, R1 = 5.4920, and γ = 0.6. The growth rate
curve is shown in figure 3. The curves for R0 = 0.3 and R0 = 0.5 are also included.
For all three growth rate curves, R0/R1 = 0.0728. From (2.14), R0/R1 is effectively
the ratio of cf to β , thus representing the beach conditions in terms of the the
roughness and geometry. Rip currents and rhythmic beach morphology are often
observed on beaches with moderate slope from 2◦ to 6◦ (Short 1999, p. 178). If we
take β = tan 4◦ � 0.07, the value of R0/R1 in figure 3 is for cf = 0.001. It is seen
that the growth rate decreases rapidly as the wave condition weakens (smaller R0)
and becomes negative when R0 is sufficiently small, indicating that the basic state is
stable. Note from (2.12) that the horizontal length and time are both scaled using
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Figure 3. Growth rate curves for different values of R0. R0/R1 = 0.0728 and γ = 0.6.
——, R0 = 0.3; – – –, R0 = 0.4; · · · · · ·, R0 = 0.5.

xF = hF /β . Thus, the growth rate curves remain the same when β is changed, except
for a different value of R0/R1. This indicates that the beach slope β is not a dynamic
parameter in this linear analysis, but rather a scaling factor.

Below we will examine the instability properties in the domain of parameters
representing the effects of offshore wave height and of bottom friction cf . The
breaking index γ controls not only the onset of breaking but also the transformation
of waves across the surf zone. Its effects on the predictions of the instability properties
are therefore also examined, and shown to be related to those of wave height and of
bottom friction.

5.1. Neutral modes and threshold wave condition

For each growth rate curve, there are two neutral modes αc at σ = 0, which define
the range of unstable wavenumbers for the chosen parameters. In figure 4, αc is
plotted as a function of R0 for several values of RB , where RB ≡ R0/R1 = (16/π)cf /β

is introduced for the convenience of discussions. Note that R0 cannot exceed γ ;
otherwise the offshore waves are breaking over the horizontal bed and the breaking
line is indefinite. The range of unstable wavenumbers increases with R0, and as RB is
reduced. So the stronger the offshore waves and the smaller the bottom friction, the
more likely it is that the instability occurs. For given RB , there is a threshold wave
condition R0cr above which the neutral modes exist. In other words, when R0 <R0cr

waves are so weak that the instability cannot occur. As the bottom friction is increased
(larger RB), R0cr becomes greater, indicating that stronger waves are required for the
instabilities. This threshold satisfies iσ = ∂(iσ )/∂α = 0. In figure 5, R0cr vs. RB is shown
for γ = 0.6. The curve separates the parameter plane into the stable and unstable
regimes. As was discussed in § 2, the dynamics of the circulations is controlled by the
competition between vorticity generation due to waves and its dissipation by bottom
friction, which is measured by R1. At the threshold, R1 = R0cr/RB . The physical
significance of the threshold wave condition is then clear: given the beach conditions
(roughness and geometry), waves must be so energetic that R0 > R0cr , in order to
produce a rate of vorticity generation that is sufficient to sustain the circulations.
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Figure 4. Wavenumber of the neutral modes as a function of R0. γ = 0.6. RB ≡ R0/R1. For a
given RB , the growth rate is zero on the curve, and positive inside the curve. ——, RB = 0.2185;
– – –, R0 = 0.1457; – · – · –, RB = 0.0728; · · · · · ·, RB = 0.0334.
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Figure 5. Threshold wave condition R0cr as a function of RB . γ = 0.6. Given RB , the basic
state is unstable when R0 > R0cr .

Otherwise, the dissipation due to bottom friction is dominant and circulations die
away eventually.

We remark that when RB = 0 (cf = 0 for finite β) and σ =0, the system is singular
because the alongshore momentum equation (4.4) fails to provide information about
v1. This singular behaviour is beyond the scope of this study, as such small values of
cf are not of practical concern. The data points computed in figure 5 cover a range
of 0.0004 <cf < 0.0039 if β = tan 4◦ is taken.

When γ is varied, while keeping the conditions of the wave and the beach unchanged
(i.e. fixing R0 and RB), the dependence of the neutral wavenumbers on the breaking
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Figure 6. Wavenumber of the neutral modes as a function of γ . R0 = 0.4, and γ >R0.
——, RB = 0.1457; · · · · · ·, RB = 0.1092; – – –, RB = 0.0728.

index is indicated in figure 6. R0 = 0.4 is chosen so that a reasonable range of γ

can be examined, since γ >R0 is required. As γ increases, the range of unstable
wavenumbers reduces, implying that the instability is less likely to occur. When γ

is sufficiently large, the instability does not occur. Given the wave and the beach,
varying the breaking index has two effects. First, it affects the width of the surf zone;
a smaller γ gives a wider surf zone. This effect can be equivalent to that of varying the
offshore wave height with γ being fixed. Second, γ determines the transformation of
waves after breaking, and so affects the estimation of the bottom friction force inside
the surf zone. Recall that the friction velocity depends on the local wave height, see
§ 4. A reduction of γ leads to a smaller wave height estimated at a given water depth,
and hence a smaller friction velocity. This is similar to the effects due to varying the
bottom friction cf with γ being fixed. In view of these, the results in figure 6 are
consistent with the findings in figure 4.

5.2. Most unstable modes and alongshore spacing of circulations

The maximum value (iσ )m of a growth rate curve defines the most unstable mode αm.
The wavelength, λm = (2π/αm)xF , is referred to as the preferred alongshore spacing of
the circulations. It can be used as a measure of the alongshore spacing of rip currents.
To see the effects of offshore wave height, we plot αm and (iσ )m as functions of R0

in figures 7(a) and 7(b), respectively, for different values of RB . Their variations with
RB , given R0, are shown in figures 8(a) and 8(b), emphasizing the effects of bottom
friction. The following observations can be made.

(i) Except for its existence, αm is independent of RB , and hence of the bottom
friction cf , see figures 7(a) and 8(a). So once the threshold of instability is exceeded,
the preferred alongshore spacing of the circulations is solely a property of the offshore
wave condition R0, though its physical value is proportional to the horizontal extent
of the nearshore region. This may be attributed to the fact that the bottom friction
appears as a body force, rather than a viscous force which dissipates momentum
according to the length scale of the motions. This finding is of particular interest in
view of the uncertainties in the friction coefficient cf .
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Figure 7. (a) Wavenumber of the most unstable mode as a function of R0: �, RB = 0.2185;
�, RB = 0.1457; �, RB = 0.0728; �, RB = 0.0364. (b) Maximum growth rate as a function of
R0: ——, RB = 0.2185; – – –, RB = 0.1457; – · – · –, RB = 0.0728; · · · · · ·, RB = 0.0364; – · · – · · –,
RB = 0, γ = 0.6.
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Figure 8. (a) Wavenumber of the most unstable mode as a function of RB : �, R0 = 0.59; �,
R0 = 0.50; �, R0 = 0.40; �, R0 = 0.25. (b) Maximum growth rate as a function of RB : ——,
R0 = 0.59; – – –, R0 = 0.50; – · – · –, R0 = 0.40; · · · · · ·, R0 = 0.25. γ = 0.6.

(ii) As R0 increases, αm decreases and so λm increases. Although the trend is
weak, it is consistent with the observations that stronger waves are correlated with
greater alongshore spacing of rip currents (Short 1985; Huntley & Short 1992). For
sufficiently strong waves, αm is essentially independent of R0, and is close to 0.63.

(iii) From figure 7(b), (iσ )m increases monotonically with R0. So the stronger
the waves, the faster the circulations develop. The increase is approximately linear
when the bottom friction is high (large RB), and becomes increasingly nonlinear as
the friction reduces. At the theoretical limit cf =0 (RB = 0), the maximum growth
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Figure 9. (a) Wavenumber of the most unstable mode as a function of γ : �, RB = 0.1457; �,
RB = 0.1092; �, RB = 0.0728. (b) Maximum growth rate as a function of γ : ——, RB = 0.1457;
– – –, RB =0.1092; · · · · · ·, RB = 0.0728. R0 = 0.4, and γ >R0.

R0 = HF /hF 0.59 0.55 0.50 0.45 0.40 0.35
Wave height HF [m] 1.880 1.760 1.600 1.440 1.280 1.120
Breaker height Hb[m] 1.894 1.791 1.659 1.525 1.388 1.247
Alongshore spacing λm[m] 456.40 456.06 454.02 446.96 436.40 419.98
Surf zone width bs[m] 51.24 48.45 44.89 41.26 37.55 33.75
λm/bs 8.91 9.41 10.11 10.83 11.62 12.44
Growth time te[min] 14.83 17.84 23.28 32.34 48.73 97.20

(for cf = 0.001)

Table 1. Predictions for a beach with β = tan 4◦ and hF =3.2 m. Horizontal and time
scales: xF = hF /β =45.76 m, t∗ = xF /(ghF )1/2 = 8.17 s; Hb = H0(xb0)HF , λm = (2π/αm)xF , bs =
(xb0 − xs0)xF , te = t∗/(iσ )m.

rate remains finite, and so is completely determined by the wave condition. From
figure 8(b), (iσ )m decreases linearly as the bottom friction is increased for a given
wave condition.

In figures 9(a) and 9(b), the wavenumber of the most unstable modes and the
corresponding maximum growth rate are plotted against γ , showing the effects of
breaking index on the predictions. The preferred alongshore spacing of the circulations
is seen to be insensitive to the value of γ . The maximum growth rate decreases as γ is
increased. The decrease is approximately linear for large RB , and becomes weaker as
RB gets smaller, in particular for 0.4 <γ < 0.7. As pointed out in § 5.1, the two effects
of varying γ can be equivalent to those of varying the offshore wave height and of
varying the bottom friction cf . Therefore, the findings in figure 9 are consistent with
those in figures 7 and 8.

To give a quantitative idea, we present in table 1 the physical values of the predicted
alongshore spacing and growth time (e-folding) of the circulations, based on the most
unstable modes. The beach geometry is β = tan 4◦ and hF = 3.2 m. The breaking index
is γ =0.6. The breaker height is defined as Hb = H0(xb0)HF . For R0 = 0.59 to 0.35,
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Ω = Hb/(wsT ) 2.7 (0.8) 3.0 (0.9) 4.0 (0.9) >4.2 (1.2)
Sediment fall velocity ws[m s−1] 0.055 0.055 0.045 0.045
Breaker height Hb[m] 1.49 1.65 1.80 1.89
Rip spacing [m] 252 (105) 298 (109) 367 (104) 463 (123)

Table 2. Observed spacing of erosion rips on Narrabeen Beach (Short 1985). For Narrabeen
Beach, the wave period T � 10 s. Numbers inside the parentheses are standard deviations.

the breaker height is about 1.894 to 1.247 m, and we estimate an alongshore spacing
of 456.40 to 419.98 m for the circulations. Correspondingly, the estimated growth
time, for cf =0.001, is 14.83 to 97.20 min. These values will be somewhat greater if a
smaller slope β , or a deeper water depth hF , is chosen since the horizontal scale will
be larger.

A thorough test of this instability theory should perhaps be done by laboratory
experiments, in which the topography and waves could both be controlled to match
the conditions considered. To our knowledge, such experiments have not yet been
attempted. On the other hand, comparisons with observations of rip currents on
natural beaches can only be qualitative, if not impossible, in view of the idealizations
of the theory and the difficulties of observationally distinguishing this mechanism
from other possibilities. Short (1985) reported on an extensive series of rip current
observations on Narrabeen Beach, Australia, over a 19 month period. The beach
changed significantly during the period of observations, but the slope seemed to be
moderate and around 4◦ (see figure 12 in Short’s paper). Short emphasizes that the
spacing and apparently also the persistence of rips depend not only on the current
wave conditions, but also on the recent history of the wave climate and the state of
the beach. Erosion rips, as they were called by Short, are initiated during the period
of increasing wave height and accompanied by general beach erosion. According to
Short, erosion rips are not prominently controlled by the topography, and are spaced
at 300 ∼ 500 m (with a standard deviation 100 ∼ 200 m). They are highly variable both
temporally and spatially, and have no preferred locations, suggesting that erosion rips
are controlled by the surf zone hydrodynamics rather than the antecedent morphology.
Erosion rips eventually rework the morphology to suit the rip spacing. It therefore
seems that the data of erosion rips are more appropriate for comparison with the
instability theory. In table 2, four data points are extracted from figure 6b in Short’s
(1985) paper (and the text below that figure). Each point represents an average of
a number of individual rip observations, and the standard deviations are also given.
These points are also plotted in Short’s figure 7b, where they are labelled 6, 7, 8
and 9. They all correspond to erosion rips. The two of them with large breaker
height are of particular interest, because the associated beach states are much less
variable alongshore. Comparing these two with the two largest wave cases in table 1,
which have nearly the same breaker heights, we find a fairly good agreement on the
alongshore spacing, especially in view of the large deviations in table 2. Over the
whole range, however, the variation of rip spacing with breaker height is greater in
table 2 than in table 1. In attempting to make this comparison we have assumed that
the instability leads to the dominant growth of the most unstable mode, and that its
wavelength does not change significantly in the subsequent nonlinear evolution into
a developed rip current. It has also been assumed that the beach parameters β and
hF used in constructing table 1 are appropriate for Narrabeen Beach in all the states
involved in the data for table 2 – perhaps an even more questionable assumption.
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Almost two-thirds of the rip data in Short (1985) were collected during periods of
decreasing wave height when the beach was being rebuilt. These rips, called ‘accretion
rips’ by Short, are more closely spaced and topographically controlled (therefore
may persist at one location for days). By grouping the data according to beach
state, and adding separately four individual days of especially high waves, Short
effectively reduced the weight of accretion rips in the total data set and obtained a
regression line of the mean rip spacing versus Ω̄ , which is the average over a group
of the dimensionless parameter Ω =Hb/(wsT ) used in table 2. It is evident from his
figure 7b that the regression line would be very little changed if these accretion rip
data (labelled 1 to 5) were completely omitted. For the relevant beach types, the
averaged sediment fall velocity may be taken as ws = 0.05 m s−1, and the wave period
was approximately T =10 s for Narrabeen Beach. Thus we may take Ω̄ = 2Hb, with
Hb being expressed in m. The regression line obtained by Short is

ȳs[m] = 124Ω̄ − 53 or ȳs[m] = 248Hb − 53. (5.1)

There is considerable variance in the fit, and as Short remarks, parameters other than
just breaker height are probably required to determine the spacing. From the point
of view of the instability theory, Hb = (R0/γ )4/5γβxF , and ys = λm = (2π/αm)xF . Upon
eliminating xF , it is interesting to see that

ys = λm = (2π/αm)Hb

[
(R0/γ )4/5γβ

]−1
. (5.2)

When the offshore waves are so strong that R0 � γ , αm =0.63; for γ = 0.6 and
β = tan 4◦, (5.2) reduces to ys[m] = 238Hb, which is very close to Short’s regression
line (5.1) over the whole range covered in his figure 7b, also within one standard
deviation of the means used in his fitting. This seems to suggest that the whole
sequence listed in table 2 is actually nearly at R0 � γ , with the lower breaker height
corresponding to a smaller depth hF which then increases through the sequence
because of the general beach erosion. Thus, for the sequence of breaker heights in
table 2, our formula just obtained would predict ys =355, 392, 428 and 450 m. This
obviously gives a better agreement with the observed rip spacing than the predictions
in table 1, where the water depth is assumed to be unchanged. In fact the four data
points of table 2 are still better fitted by the line ys[m] = 200Hb which is obtained from
(5.2) if R0 � γ , and β = tan 4◦, γ =0.7 (or β = tan 4.75◦, γ = 0.6). On the other hand,
if β = tan 3◦ and γ = 0.7 (or β = tan 3.5◦, γ = 0.6), we could obtain from (5.2) that
ys[m] = 272Hb for R0 � γ , which over-estimates the spacing slightly. All these values
are plausible, in view of the uncertainty of the topography when the measurements
were taken, and the idealizations of the theory. As remarked before, these attempts
at comparing the instability theory with observations on natural beaches must be
regarded as very speculative.

Another comparison with Short’s data (see also Huntley & Short 1992) can be
attempted with his figure 5(b), in which a number of points are given for erosion
rips in a plot for rip spacing against surf zone width. These are quite spread out, but
indicate a ratio of spacing to surf zone width ranging from 1.5 to 8. Bowen & Inman
(1969) also found this value. From table 1, the present instability theory gives this
ratio of 9 when waves are strong, and still larger when waves are weaker. Clearly,
the theory over-estimates this ratio. A possible reason of this discrepancy is that the
observational definition of the surf zone may differ from that of the theory either
because of a different topography, notably a longshore bar (which is often present),
or because the waves are random both in direction and in amplitude, leading to an
ill-defined point of initiation of breaking.
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5.3. Perturbation fields

For any particular variable, the total solution is

f (x, y, t, ε) = f0(x) + εf̂1(x)eiαy+iσ t + c.c. + · · · ,

where f0 and f̂ 1 are both obtained on the unperturbed domain, i.e. xs0 � x � xb0

for the inside of the surf zone and x � xb0 for the outside. The matching condition
(4.29) ensures the continuity of the total solution at the actual breaking line x = xb,
except for the alongshore velocity v. This means that in the region bounded by x = xb

and x = xb0, an extrapolation of f0 toward the actual breaking line is required for

the continuity of f . Thus, in this region f̂1 does not in general represent all of the
deviation of the total solution from its basic state. The extrapolation of f0, if not
zero, makes an additional contribution to the perturbation field of f , as a result of
the deformation of the domain. This is in fact the manifestation of the matching
condition (4.29).

For the convenience of graphing the perturbation fields, we introduce a boundary-
conformal, non-orthogonal coordinate system (ξ, y), in which the domain does not
appear to be perturbed, i.e.

ξ = xs0 +
x − xs

xb − xs

(xb0 − xs0) for xs � x � xb, (5.3a)

ξ = xb0 +
x − xb

1 − xb

(1 − xb0) for xb � x � 1, (5.3b)

ξ = x for x > 1. (5.3c)

Clearly, the actual surf zone xs � x � xb is mapped onto xs0 � ξ � xb0, the shoaling
zone xb � x � 1 onto xb0 � ξ � 1 and the section above the flat bed, i.e. x > 1, onto
ξ > 1. In the absence of perturbations, i.e. ε = 0, x(ξ, y, t, 0) = ξ or simply x = ξ . The
mapping of the total solution is

f (x, y, t, ε) = F (ξ (x, y, t, ε), y, t, ε) or F (ξ, y, t, ε) = f (x(ξ, y, t, ε), y, t, ε). (5.4)

The basic state must then satisfy

F0(ξ ) ≡ F (ξ, y, t, 0) = f (x(ξ, y, t, 0), y, t, 0) ≡ f0(ξ ). (5.5)

For clarity of discussion, we shall henceforth suppress explicit mention of y and t .

For small ε, x(ξ, ε) = ξ + ε ̂∂x/∂ε|ε = 0 + O(ε2). Thus,

f (x(ξ, ε), ε) = f0(x(ξ, 0)) + εf1(x(ξ, ε)) + c.c. + O(ε2)

= F0(ξ ) + εF1(ξ ) + c.c. + O(ε2), (5.6)

where

F1(ξ ) = f0,ξ (ξ )
∂x

∂ε

∣∣∣∣
ε=0

+ f1(ξ ) (5.7)

is the perturbation field as seen in the ξ coordinate. Utilizing the expansions of xs

and xb, see § 4, we then find from (5.3) that

∂x

∂ε

∣∣∣∣
ε=0

=
∂̂x

∂ε

∣∣∣∣
ε=0

eiαy+iσ t + c.c.,

where

∂̂x

∂ε

∣∣∣∣
ε=0

=
δxs1(xb0 − ξ ) + δxb1(ξ − xs0)

xb0 − xs0

(5.8)
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Figure 10. Across-shore variations of the amplitudes of the perturbations. α = 0.64 and
iσ = 0.00422. This is the most unstable mode for R0 = 0.45, RB = 0.0728 and γ =0.6. The

breaking line at the basic state is at ξ = xb0 � 0.80. (a) ——, F̂ u
1 ; · · · · · ·, −iF̂ v

1 ; – – –, F̂
η
1 .

(b) ——, F̂ H
1 ; · · · · · ·, F̂ k

1 ; – – –, −iF̂ l
1.

for xs0 � ξ � xb0 and

∂̂x

∂ε

∣∣∣∣
ε=0

=
δxb1(1 − ξ )

1 − xb0

(5.9)

for xb0 � ξ � 1. δxs1 = −η̂1(xs0)/β̃ and δxb1 is given in (4.28). For ξ > 1, (∂x/∂ε)ε =0 = 0.

Note that ̂∂x/∂ε|ε = 0 = δxb1 at ξ = xb0. Thus, the matching condition (4.29) is in fact
the continuity of F1 at the breaking line. As it explicitly accounts for the deformation
of the domain, F1(ξ ) represents more clearly the character of the perturbation than
f1(x), particularly in the neighbourhood of x = xb0 where f0,x is discontinuous. For
any fixed x away from the breaking line (or shoreline), εf1(x) still is the deviation
from the basic state.

Upon removing the factor eiαy+iσ t , we find from (5.7) the amplitude of the
perturbation, i.e. F̂ 1(ξ ) = f0,ξ (ξ ) ̂∂x/∂ε|ε = 0 + f̂1(ξ ). To refer to a specific variable, we

use the appropriate superscript, e.g. F̂
η

1 = η0,ξ (ξ ) ̂∂x/∂ε|ε = 0 + η̂1(ξ ). Figure 10 shows
the cross-shore variations of the amplitudes of the perturbations for the variables
of the circulation and the wave. The alongshore wavenumber and growth rate are
taken as α = 0.64 and iσ =0.00422, which correspond to the most unstable mode for
R0 = 0.45, RB = 0.0728 and γ =0.6. Note that for a real iσ , the perturbations can

be so normalized that all the variables are real, except for v̂1 and l̂1 which are pure

imaginary. A few remarks should be made. (i) The cross-shore velocity, i.e. F̂ u
1 = û1,

reaches a maximum at the breaking line ξ = xb0 � 0.80. It is reduced by a factor of
e at ξ � 2.0, and is less than 20% of the maximum at ξ � 4xb0. (ii) The alongshore

velocity, i.e. F̂ v
1 = v̂1, reaches its maximum inside the surf zone. The maximum of v̂1

is about 4 times of that of û1. This is a consequence of (approximate) flux balance,
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as the alongshore flows feed into rip currents over a width (approximately equal
to xb0) that is much smaller than the width over which the offshore flux occurs
(half of the alongshore wavelength of the normal mode). The discontinuity of v̂1 at
ξ = xb0 is expected, as the alongshore velocity is not subject to the matching. (iii) The

perturbation of the surface elevation, F̂
η

1 , is small, indicating that the circulation is

not primarily pressure driven at this stage. (iv) F̂ H
1 has the same sign as û1, and so

has Ĥ1. Thus, the wave energy is focused when encountering the opposing offshore
flows.

6. Concluding remarks
On examining the linear instability in the formation of depth-averaged nearshore

circulations due to wave–current interactions, we have given mathematical and
physical solutions to those issues which were not handled properly in previous
studies. With physically plausible parameters and a moderate beach slope, we have
found that circulations with alongshore spacing of a few hundred metres can be
initiated by the instability on beaches of typical water depth. The estimated growth
time is a few tens of minutes. The predicted alongshore spacing of the circulations is in
qualitative agreement with the observed rip spacing. Several conclusions have emerged.
(i) The instability occurs when the wave height exceeds a threshold, given a bottom
friction condition. (ii) The alongshore spacing of the circulations is independent of
the empirical values of the bottom friction coefficient and the breaking index once
the threshold of instability is exceeded. For stronger waves, the spacing tends to
be greater. (iii) The growth rate increases with the wave height, and as the bottom
friction decreases, being approximately a linear function of cf . It is our intention
to extend the theory to deal with more realistic topography, such as beaches with
alongshore bars, and to investigate the subsequent nonlinear evolution into developed
rip currents.

This work was initiated at Duke University, Durham, NC 27708, when J. Y. was
supported by the Andrew W. Mellon Foundation through a grant to A. Brad Murray
at the Division of Earth and Ocean Sciences. The preliminary results of this work
have been reported at the Theodore Y.-T. Wu Symposium on Engineering Mechanics,
joint with the 23rd International Conference on Offshore Mechanics and Arctic
Engineering in July 2004. Helpful discussions with Roberto Camassa and Louis N.
Howard are gratefully acknowledged.

Appendix. Characteristics for the hyperbolic system
For a hyperbolic system in a finite domain, the number and nature of the boundary

conditions are determined by the characteristics of the system. In this Appendix, we
show that the characteristic analysis gives rigorous justifications of the asymptotic
behaviour at the shoreline and at large x, and the matching conditions, determined
in § 4.2 and § 4.3.

Define a column vector φ. For x < xb0, φ = [u1, η1, l1, v1]
T , and for x >xb0,

φ = [u1, η1, H1, l1, v1]
T , where T stands for the transpose. The variables which do

not involve the time derivative are not included, such as H1 inside the surf zone and
k1. Assuming the periodicity in y such that ∂/∂y → iα, but retaining the t and x

derivatives, we write (4.2)–(4.10) in the form

φt + Aφx = Bφ, (A 1)
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corresponding to the appropriate region. A and B are 4 × 4 square matrices for the
inside of the surf zone, and 5 × 5 for the outside. Let τ be the eigenvalues of A,
and e be the left eigenvectors such that eA= τ e. If all the eigenvalues τ1, . . . , τn are
real, where n= 4 for x <xb0 and n= 5 for x > xb0, and the corresponding eigenvectors
e1, . . . , en are linearly independent, the system (A 1) is hyperbolic (Courant & Hilbert
1962). The characteristic curves Ci are then defined as dx/dt = τi, i = 1, . . . , n. Letting
Di = ∂/∂t + τi∂/∂x be the directional derivative for the curve Ci , we rewrite (A 1) as
Dizi = gi , where zi = ei · φ is the quantity that propagates along Ci , and gi = ei · B · φ
is the forcing of zi . We now examine the systems inside and outside the surf zone
separately.

A.1. Inside the surf zone

For x <xb0, according to the entries in φ, we find from (4.3), (4.2), (4.6) and (4.4) that

A =




0
(
1 + 3

8
γ 2

)
0 0

d0 0 0 0

0 0 −d
1/2
0 0

0 0 − 1
8
γ 2d

3/2
0 0


 , (A 2)

B =




− 1
8
R2

0R
−1
1 µ0d

−1
0 0 1

8
iαγ 2d

3/2
0 0

−d0,x 0 0 −iαd0

iαd
−1/2
0 − 1

2
iαd−1

0 0 0

0 −iα
(
1 + 1

8
γ 2

)
5
16

γ 2d
1/2
0 d0,x − 1

8
R2

0R
−1
1 µ0d

−1
0


 . (A 3)

In deriving these, we have replaced k1,y in (4.6) by l1,x using (4.8), since k1 is not an
entry of the column vector φ (as we use (4.8) to maintain the irrotationality of k, we
do not have an equation of k1,t ). The column of zeros in the matrix A in (A 2) reflects
the fact that v1,x is not involved in the linearized equations. The eigenvalues of A are

τ1 = 0, τ2 = −d
1/2
0 , τ3 = d

1/2
0

(
1 + 3

8
γ 2

)1/2
, τ4 = −d

1/2
0

(
1 + 3

8
γ 2

)1/2
. (A 4)

All the eigenvalues are real and distinct, so a set of linearly independent left
eigenvectors exists. Since the eigenvalues do not depend on R1, the characteristic
curves are not affected by the bottom friction coefficient cf . The curve C−

1 , defined by
τ1, is simply x = const. The curves C−

2 and C−
4 , defined by τ2 and τ4 respectively, are

shoreward directed (incoming). C−
3 is directed seaward (outgoing). Correspondingly,

z1 = − 1
8
γ 2d0l1 + v1, z2 = l1,

z3 =
[
d0/

(
1 + 3

8
γ 2

)]1/2
u1 + η1, z4 = −

[
d0/

(
1 + 3

8
γ 2

)]1/2
u1 + η1.

}
(A 5)

The shoreline x = xs0 is a characteristic curve C−
1 , therefore z1 should not be

prescribed there (Courant & Hilbert 1962). It is physically justified that no boundary
conditions are needed for l1 and v1 at the shoreline, since the waves propagate
onshore and the flow is inviscid. The curve C−

3 enters the surf zone at the shoreline, so
a condition must be imposed on z3 at x = xs0. This is the kinematic boundary condition
(4.12) at the shoreline, which concerns u1 and η1. The incoming characteristic curves
C−

2 (carrying l1) and C−
4 (carrying a linear combination of u1 and η1) propagate the

solution from the interior (the surf zone) to the shoreline. To connect the asymptotic
solution, determined close to the shoreline, to these incoming solutions (to be
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determined), one must allow two degrees of freedom in the asymptotic representation.
Otherwise, inconsistency may occur.

At the breaking line x = x−
b0, two conditions, on z2 and on z4, are needed as the

curves C−
2 and C−

4 are entering the surf zone. These conditions concern l1, u1 and η1,
and are to be provided by the solutions at the offshore side of the breaking line (i.e.
outside the surf zone). On the other hand, the outgoing curve C−

3 is leaving the surf
zone at x = x−

b0, providing the boundary conditions for the region outside the surf
zone. Since x = x−

b0 is a characteristic curve C−
1 , no prescribed data are applied to z1.

This implies that v1 is not to be matched at the breaking line.

A.2. Outside the surf zone

For x >xb0, we find from (4.3), (4.2), (4.9), (4.6) and (4.4) that

A =




0 1 3
8
R2

0d
−5/4
0 0 0

d0 0 0 0 0
5
4
d

−1/4
0 − 1

4
d

−3/4
0 −d

1/2
0 0 0

0 0 0 −d
1/2
0 0

0 0 0 − 1
8
R2

0d
−1
0 0


 , (A 6)

B =




− 1
8

R
2

0

R1

µ0d
−1
0 − 3

32
R0d

−7/2
0 d0,x

3
32

R
2

0d
−9/4
0 d0,x

1
8
iαR

2

0d
−1
0 0

−d0,x 0 0 0 −iαd0

1
4
d

−5/4
0 d0,x − 1

4
d

−7/4
0 d0,x − 1

4
d

−1/2
0 d0,x − 1

2
iαd

3/4
0 − 3

4
iαd

−1/4
0

iαd
−1/2
0 − 1

2
iαd−1

0 0 0 0

0 −iα − 1
8
iαR

2

0d
−5/4
0 0 − 1

8

R
2

0

R1

µ0d
−1
0




.

(A 7)
The eigenvalues of A are τ1 = 0, τ2 = −d

1/2
0 , and τ3, τ4 and τ5 are the roots of

τ 3 + d
1/2
0 τ 2 −

(
d0 + 15

32
R2

0d
−3/2
0

)
τ −

(
d

3/2
0 − 3

32
R2

0d
−1
0

)
= 0. (A 8)

It can be shown that τ1, . . . , τ5 are real and distinct, and a set of linearly independent
left eigenvectors exists. Furthermore, τ3 + τ4 + τ5 = −d

1/2
0 < 0 and τ3τ4τ5 = (d3/2

0 −
3
32

R2
0d

−1
0 ) > 0; thus (A 8) has two negative roots, say τ3 and τ4, and one positive root

τ5. In view of these, the characteristic curves C+
2 , C+

3 and C+
4 are directed shoreward;

C+
5 is seaward, and C+

1 is again x = const. The quantities carried by each curve are

z1 = − 1
8
R2

0d
−3/4
0 l1 + v1, z2 = l1, zi = ei1u1 + ei2η1 + ei3H1, i = 3, 4, 5, (A 9)

where ei1, ei2 and ei3 are the first three entries of the left eigenvector ei .
Since C+

2 , C+
3 and C+

4 are incoming, z2, z3 and z4 must vanish as x → ∞ as the
radiation condition allows only the outward propagation of the disturbances. C+

5 is
the only outgoing characteristic at infinity, suggesting that one degree of freedom can
be allowed in the asymptotic behaviour at large x. This justifies the finding in § 4.2
that only one family of decaying solutions can be used to construct an asymptotic
representation which uniformly satisfies the radiation condition.

At x = x+
b0, C+

2 , C+
3 and C+

4 propagate the solutions (u1, η1, l1 and H1) in the shoaling
zone to the breaking line. These are to be matched with the solutions at x = x−

b0. For
the outgoing curve C+

5 , a condition on z5 at x = x+
b0 is required, which involves u1,

η1 and H1. Such information is provided by the outgoing curve C−
3 at x = x−

b0. Note
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that H1 is linearly related to η1 at the onset of the breaking, and continues to be
so afterward. Since x = x+

b0 is a characteristic curve, no condition is applied to z1. In
view of the characteristics at x = x−

b0 and at x = x+
b0, we conclude that three linearly

independent matching conditions can be formulated at the breaking line, concerning
u1, η1 and l1.
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